These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Space-division multiplexing optical coherence tomography.
    Author: Zhou C, Alex A, Rasakanthan J, Ma Y.
    Journal: Opt Express; 2013 Aug 12; 21(16):19219-27. PubMed ID: 23938839.
    Abstract:
    High speed, high resolution and high sensitivity are desirable for optical coherence tomography (OCT). Here, we demonstrate a space-division multiplexing (SDM) technology that translates long coherence length of a commercially available wavelength tunable laser into high OCT imaging speed. We achieved an effective 800,000 A-scans/s imaging speed using a 100,000 Hz tunable vertical cavity surface-emitting laser (VCSEL). A sensitivity of 94.6 dB and a roll-off of < 2 dB over ~30 mm imaging depth were measured from a single channel in the prototype SDM-OCT system. An axial resolution of ~11 μm in air (or ~8.3 μm in tissue) was achieved throughout the entire depth range. An in vivo, 3D SDM-OCT volume of an entire Drosophila larva consisting of 400 x 605 A-scans was acquired in 0.37 seconds. Synchronized cross-sectional OCT imaging of three different segments of a beating Drosophila larva heart is demonstrated. The SDM technology provides a new orthogonal dimension for further speed improvement for OCT with favorable cost scaling. SDM-OCT also preserves image resolution and allows synchronized cross-sectional and three-dimensional (3D) imaging of biological samples, enabling new biomedical applications.
    [Abstract] [Full Text] [Related] [New Search]