These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A flexible approach to strained sandwich compounds: chiral [1]ferrocenophanes with boron, gallium, silicon, and tin in bridging positions. Author: Sadeh S, Schatte G, Müller J. Journal: Chemistry; 2013 Sep 27; 19(40):13408-17. PubMed ID: 23946216. Abstract: The enantiomerically pure dibromoferrocene 3 [(Sp,Sp )-1,1'-dibromo-2,2'-di(isopropyl)ferrocene], equipped with two iPr groups in α positions, was prepared using known "Ugi amine" chemistry. Species 3 was targeted in order to gain access to new [1]ferrocenophanes ([1]FCPs) to be used as monomers for ring-opening polymerization. The iPr groups on the sandwich unit were introduced to stabilize bridging moieties, as well as to increase solubilities of targeted metallopolymers. The planar chiral dibromide 3 can quantitatively be lithiated at 0°C [2 equiv nBuLi, hexanes/thf (9:1), 30 min]. Salt-metathesis reactions with respective element dichloride species gave chiral [1]FCPs with a variety of bridging moieties [ERx =Ga[2-(Me2NCH2)C6H4] (4 a), SiMe2 (4 b), SntBu2 (4 c), BNiPr2 (4 d)]. The new [1]FCPs were fully characterized including single-crystal X-ray analysis. The stabilizing iPr groups on the Cp rings increase the thermal stabilities of 4 b-d compared to known [1]FCPs, equipped with the same bridging moieties. All three compounds 4 b-d are volatile and could be isolated by vacuum sublimation. Our new approach to [1]FCPs has the potential to overcome many of the existing difficulties in ferrocenophane chemistry, such as limited stability of starting monomers and low solubilities of resulting polyferrocenes.[Abstract] [Full Text] [Related] [New Search]