These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of hyperthermia on the repair of radiation-induced DNA single- and double-strand breaks in DNA double-strand break repair-deficient and repair-proficient cell lines. Author: Iliakis G, Seaner R, Okayasu R. Journal: Int J Hyperthermia; 1990; 6(4):813-33. PubMed ID: 2394929. Abstract: The effect of heat on the induction and repair of DNA single (ssb) and double (dsb) strand breaks was studied in irradiated exponentially growing or plateau-phase CHO cells and their DNA dsb repair-deficient, radiation-sensitive counterpart, the xrs-5 cells. Induction and repair of DNA ssb was measured by the alkaline unwinding technique, whereas induction and repair of DNA dsb was measured by the non-unwinding filter elution technique. The results indicated that pre-exposure of cells to heat (45 x 5 degrees C) for 8-30 min did not affect the induction of DNA ssb or DNA dsb per Gy and dalton of DNA in CHO or xrs-5 cells, tested either in the exponential or in the plateau-phase of growth. On the other hand, pre-exposure to heat inhibited DNA repair processes and increased the fraction of unrepaired radiation-induced damage measured 2 h after irradiation. Repair of DNA dsb was more heat-sensitive than repair of DNA ssb in both cell lines. Repair of radiation-induced ssb or dsb was inhibited in xrs-5 cells to a larger extent than in CHO cells after a similar exposure to heat. These results complement those previously reported on heat-induced radiosensitization in these cell lines, and suggest that the reduction in heat-induced radiosensitization observed in xrs-5 cells is largely due to their deficiency in repairing DNA dsb, rather than to a reduction in the ability of heat to inhibit DNA repair processes in general. The data presented here provide further support to the hypothesis that DNA dsb repair proficiency is a prerequisite for heat-induced radiosensitization.[Abstract] [Full Text] [Related] [New Search]