These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Time and volume dependence of dead space in healthy and surfactant-depleted rat lungs during spontaneous breathing and mechanical ventilation. Author: Dassow C, Schwenninger D, Runck H, Guttmann J. Journal: J Appl Physiol (1985); 2013 Nov 01; 115(9):1268-74. PubMed ID: 23950167. Abstract: Volumetric capnography is a standard method to determine pulmonary dead space. Hereby, measured carbon dioxide (CO2) in exhaled gas volume is analyzed using the single-breath diagram for CO2. Unfortunately, most existing CO2 sensors do not work with the low tidal volumes found in small animals. Therefore, in this study, we developed a new mainstream capnograph designed for the utilization in small animals like rats. The sensor was used for determination of dead space volume in healthy and surfactant-depleted rats (n = 62) during spontaneous breathing (SB) and mechanical ventilation (MV) at three different tidal volumes: 5, 8, and 11 ml/kg. Absolute dead space and wasted ventilation (dead space volume in relation to tidal volume) were determined over a period of 1 h. Dead space increase and reversibility of the increase was investigated during MV with different tidal volumes and during SB. During SB, the dead space volume was 0.21 ± 0.14 ml and increased significantly at MV to 0.39 ± 0.03 ml at a tidal volume of 5 ml/kg and to 0.6 ± 0.08 ml at a tidal volume of 8 and 11 ml/kg. Dead space and wasted ventilation during MV increased with tidal volume. This increase was mostly reversible by switching back to SB. Surfactant depletion had no further influence on the dead space increase during MV, but impaired the reversibility of the dead space increase.[Abstract] [Full Text] [Related] [New Search]