These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of hydroxyethyl starch in ischemia-reperfusion injury in rat intestinal transplantation.
    Author: Li XL, Zou Xm, Nie G, Song ML, Li G, Cui W.
    Journal: Transplant Proc; 2013; 45(6):2491-6. PubMed ID: 23953568.
    Abstract:
    OBJECTIVE: This study was designed to evaluate the role of 0%, 3%, 6% hydroxyethyl starch (HES) and University of Wisconsin (UW) perfusion and preservation solutions on ischemia-reperfusion injury (IRI) of rat intestinal transplantations, solutions, respectively. MATERIALS AND METHODS: Rats underwent orthotopic intestinal transplantation (Lewis to Lewis) after using perfusion and preservation saline (group l), 3% HES (group 2), 6% HES (group 3), or UW (group 4) solutions. The change in weight was recorded from preoperative to postoperative day (POD) 30. At 30 minutes after reperfusion, we harvested intestinal juice preoperatively as well as at 30 minutes after reperfusion and on POD 1 and 3 when recipients underwent open surgery for maltose absorption tests and sampling. The Park' scores of IRI were evaluated by light microscopy after hematoxylin and eosin (H&E) staining. RESULTS: An increased weight was more evident in group 2 than the other groups, particularly the on POD 1 and POD 3 (P < .05). It was significantly greater than groups 1 and 3 on POD 7 (P < .05). Compared with the other groups, the 30-minute post-reperfusion. Park score and intestinal juice content in group 2 was decreased significantly (P < .01), while in group 3 the Park score was increased, and the maltose absorption level decreased significantly (P < .05). CONCLUSION: Three percent HES solution attenuated IRI in rat intestinal transplantation. High-concentration HES solutions were unfit for intestinal preservation. Thus the adverse effects of UW solution may be attribute at least in part to its high HES, concentration.
    [Abstract] [Full Text] [Related] [New Search]