These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual PI3K/mTOR inhibitor NVP-BEZ235 sensitizes docetaxel in castration resistant prostate cancer.
    Author: Yasumizu Y, Miyajima A, Kosaka T, Miyazaki Y, Kikuchi E, Oya M.
    Journal: J Urol; 2014 Jan; 191(1):227-34. PubMed ID: 23954373.
    Abstract:
    PURPOSE: Effective therapeutic strategies that can achieve long-term improvement in patients with castration resistant prostate cancer are urgently needed. We recently reported that the activated PI3K/Akt/mTOR signaling pathway induced by docetaxel explains resistance to docetaxel in castration resistant prostate cancer. In this study we explored the efficacy of NVP-BEZ235, a dual PI3K and mTORC1/2 inhibitor, for docetaxel resistant castration resistant prostate cancer. MATERIALS AND METHODS: We used the 2 human castration resistant prostate cancer cell lines C4-2 and C4-2AT6. At our laboratory C4-2AT6 cells were established from C4-2 under androgen ablated treatment for 6 months. We investigated the efficacy of NVP-BEZ235 monotherapy and NVP-BEZ235 combined with docetaxel in vitro and in vivo. RESULTS: Increased phosphorylated Akt in C4-2AT6 cells was significantly inhibited by NVP-BEZ235 in a dose and time dependent manner. WST cell proliferation assay results in C4-2AT6 cells revealed that combined administration of NVP-BEZ235 and docetaxel had significant, synergistically greater cytotoxicity than NVP-BEZ235 or docetaxel monotherapy. Combined NVP-BEZ235 (40 mg/kg) and docetaxel (4 mg/kg) in vivo in a castrated mouse xenograft model inhibited C4-2AT6 tumor growth to a greater degree than in the monotherapy groups. Also, NVP-BEZ235 showed significant efficacy with docetaxel at a low concentration in vivo, suggesting that NVP-BEZ235 effectively decreased resistance to docetaxel. CONCLUSIONS: Results suggest that inhibition of the PI3K/Akt/mTOR signaling pathway by NVP-BEZ235 can overcome docetaxel resistance in human castration resistant prostate cancer. Our findings provide a molecular basis for the clinical use of combined administration of NVP-BEZ235 and docetaxel in patients with castration resistant prostate cancer.
    [Abstract] [Full Text] [Related] [New Search]