These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Theoretical studies on the photoelectron and absorption spectra of MnO4(-) and TcO4(-). Author: Su J, Xu WH, Xu CF, Schwarz WH, Li J. Journal: Inorg Chem; 2013 Sep 03; 52(17):9867-74. PubMed ID: 23957772. Abstract: The tetraoxo pertechnetate anion (TcO4(-)) is of great interest for nuclear waste management and radiopharmceuticals. To elucidate its electronic structure and to compare with that of its lighter congener MnO4(-), the photoelectron and electronic absorption spectra of MnO4(-) and TcO4(-) are investigated with density functional theory (DFT) and ab initio wave function theory (WFT). The vertical electron detachment energies (VDEs) of MnO4(-) obtained with the CR-EOM-CCSD(T) method are in good agreement with the lowest two experimental VDEs; the differences are less than 0.1 eV, representing a significant improvement over the IP-EOM-CCSD(T) result in the literature. Combining our CCSD(T) and CR-EOM-CCSD(T) results, the first five VDEs of TcO4(-) are estimated between 5 and 10 eV with an estimated accuracy of about ±0.2 eV. The vertical excitation energies are determined by using TD-DFT, CR-EOM-CCSD(T), and RAS-PT2 methods. The excitation energies and the assignments of the spectra are analyzed and partly improved. They are compared with reported SAC-CI results and available experimental data. Both dynamic and nondynamic electron correlations are important in the ground and excited states of MnO4(-) and TcO4(-). Nondynamical correlations are particularly relevant in TcO4(-) for reliable prediction of excitation energies. In TcO4(-) one Rydberg state interlaces but does not mix with the valence excited states, and it disappears in the condensed phase.[Abstract] [Full Text] [Related] [New Search]