These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Author: Koehler A, Schlupf J, Schneider M, Kraft B, Winter C, Kashef J. Journal: Dev Biol; 2013 Nov 01; 383(1):132-45. PubMed ID: 23958437. Abstract: Xenopus cadherin-11 (Xcadherin-11) is an exceptional cadherin family member, which is predominantly expressed in cranial neural crest cells (NCCs). Apart from mediating cell-cell adhesion it promotes cranial NCC migration by initiating filopodia and lamellipodia formation. Here, we demonstrate an unexpected function of Xcadherin-11 in NCC specification by interfering with canonical Wnt/β-catenin signaling. Loss-of-function experiments, using a specific antisense morpholino oligonucleotide against Xcadherin-11, display a nuclear β-catenin localization in cranial NCCs and a broader expression domain of the proto-oncogene cyclin D1 which proceeds c-myc up-regulation. Additionally, we observe an enhanced NCC proliferation and an expansion of specific NCC genes like AP2 and Sox10. Thereby, we could allocate NCC proliferation and specification to different gene functions. To clarify which domain in Xcadherin-11 is required for early NCC development we tested different deletion mutants for their rescue ability in Xcadherin-11 morphants. We identified the cytoplasmic tail, specifically the β-catenin binding domain, to be necessary for proper NCC development. We propose that Xcadherin-11 is necessary for controlled NCC proliferation and early NCC specification in tuning the expression of the canonical Wnt/β-catenin target genes cyclin D1 and c-myc by regulating the concentration of the nuclear pool of β-catenin.[Abstract] [Full Text] [Related] [New Search]