These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide-releasing amphiphilic poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Author: Lu Y, Slomberg DL, Shah A, Schoenfisch MH. Journal: Biomacromolecules; 2013 Oct 14; 14(10):3589-98. PubMed ID: 23962307. Abstract: A series of amphiphilic nitric oxide (NO)-releasing poly(amidoamine) (PAMAM) dendrimers with different exterior functionalities were synthesized by a ring-opening reaction between primary amines on the dendrimer and propylene oxide (PO), 1,2-epoxy-9-decene (ED), or a ratio of the two, followed by reaction with NO at 10 atm to produce N-diazeniumdiolate-modified scaffolds with a total storage of ~1 μmol/mg. The hydrophobicity of the exterior functionality was tuned by varying the ratio of PO and ED grafted onto the dendrimers. The bactericidal efficacy of these NO-releasing vehicles against established Gram-negative Pseudomonas aeruginosa biofilms was then evaluated as a function of dendrimer exterior hydrophobicity (i.e., ratio of PO/ED), size (i.e., generation), and NO release. Both the size and exterior functionalization of dendrimer proved important to a number of parameters including dendrimer-bacteria association, NO delivery efficiency, bacteria membrane disruption, migration within the biofilm, and toxicity to mammalian cells. Although enhanced bactericidal efficacy was observed for the hydrophobic chains (e.g., ED), toxicity to L929 mouse fibroblast cells was also noted at concentrations necessary to reduce bacterial viability by 5-logs (99.999% killing). The optimal PO to ED ratios for biofilm eradication with minimal toxicity against L929 mouse fibroblast cells were 7:3 and 5:5. The study presented herein demonstrated the importance of both dendrimer size and exterior properties in determining efficacy against established biofilms without compromising biocompatibility to mammalian cells.[Abstract] [Full Text] [Related] [New Search]