These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular dynamics simulations reveal that apo-HisJ can sample a closed conformation. Author: Chu BC, Chan DI, DeWolf T, Periole X, Vogel HJ. Journal: Proteins; 2014 Mar; 82(3):386-98. PubMed ID: 23966221. Abstract: The Escherichia coli histidine binding protein HisJ is a type II periplasmic binding protein (PBP) that preferentially binds histidine and interacts with its cytoplasmic membrane ABC transporter, HisQMP2 , to initiate histidine transport. HisJ is a bilobal protein where the larger Domain 1 is connected to the smaller Domain 2 via two linking strands. Type II PBPs are thought to undergo "Venus flytrap" movements where the protein is able to reversibly transition from an open to a closed conformation. To explore the accessibility of the closed conformation to the apo state of the protein, we performed a set of all-atom molecular dynamics simulations of HisJ starting from four different conformations: apo-open, apo-closed, apo-semiopen, and holo-closed. The simulations reveal that the closed conformation is less dynamic than the open one. HisJ experienced closing motions and explored semiopen conformations that reverted to closed forms resembling those found in the holo-closed state. Essential dynamics analysis of the simulations identified domain closing/opening and twisting as main motions. The formation of specific inter-hinge strand and interdomain polar interactions contributed to the adoption of the closed apo-conformations although they are up to 2.5-fold less prevalent compared with the holo-closed simulations. The overall sampling of the closed form by apo-HisJ provides a rationale for the binding of unliganded PBPs with their cytoplasmic membrane ABC transporters.[Abstract] [Full Text] [Related] [New Search]