These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Caloric restriction modulates Mcl-1 expression and sensitizes lymphomas to BH3 mimetic in mice.
    Author: Meynet O, Zunino B, Happo L, Pradelli LA, Chiche J, Jacquin MA, Mondragón L, Tanti JF, Taillan B, Garnier G, Reverso-Meinietti J, Mounier N, Michiels JF, Michalak EM, Carles M, Scott CL, Ricci JE.
    Journal: Blood; 2013 Oct 03; 122(14):2402-11. PubMed ID: 23966420.
    Abstract:
    Caloric restriction (CR) is proposed to decrease tumorigenesis through a variety of mechanisms including effects on glycolysis. However, the understanding of how CR affects the response to cancer therapy is still rudimentary. Here, using the Eµ-Myc transgenic mouse model of B-cell lymphoma, we report that by reducing protein translation, CR can reduce expression of the prosurvival Bcl-2 family member Mcl-1 and sensitize lymphomas to ABT-737-induced death in vivo. By using Eµ-Myc lymphoma cells lacking p53, we showed that CR mimetics such as 2-deoxyglucose led to a decrease in Mcl-1 expression and sensitized lymphoma cells to ABT-737-induced death independently of p53. In keeping with this, Eµ-Myc lymphoma cells lacking the BH3-only proapoptotic members Noxa, Puma, or Bim were also sensitized by CR mimetics to ABT-737-induced death. Remarkably, neither the loss of both Puma and Noxa, the loss of both Puma and Bim, nor the loss of all three BH3-only proteins prevented sensitization to ABT-737 induced by CR mimetics. Thus, CR can influence Mcl-1 expression and sensitize cells to BH3 mimetic-induced apoptosis, independently of the main BH3-only proteins and of p53. Exploiting this may improve the efficiency of, or prevent resistance to, cancer therapy.
    [Abstract] [Full Text] [Related] [New Search]