These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficacy of osmoprotectants on prevention and treatment of murine dry eye.
    Author: Chen W, Zhang X, Li J, Wang Y, Chen Q, Hou C, Garrett Q.
    Journal: Invest Ophthalmol Vis Sci; 2013 Sep 19; 54(9):6287-97. PubMed ID: 23970467.
    Abstract:
    PURPOSE: To evaluate the efficacy of osmoprotectants on prevention and treatment of dry eye in a murine model. METHODS: Dry eye was induced in mice by using an intelligently controlled environmental system (ICES). Osmoprotectants betaine, L-carnitine, erythritol, or vehicle (PBS) were topically administered to eyes four times daily following two schedules: schedule 1 (modeling prevention): dosing started at the beginning of housing in ICES and lasted for 21 or 35 days; schedule 2 (modeling treatment): dosing started after ICES-housed mice developed dry eye (day 21), continuing until day 35. Treatment efficacy was evaluated for corneal fluorescein staining; corneal epithelial apoptosis by TUNEL and caspase-3 assays; goblet cell numbers by PAS staining; and expression of inflammatory mediators, TNF-α, IL-17, IL-6, or IL-1β by using RT-PCR on days 0, 14, 21, and/or 35. RESULTS: Compared with vehicle, prophylactic administration of betaine, L-carnitine, or erythritol significantly decreased corneal staining and expression of TNF-α and IL-17 on day 21 (schedule 1). Treatment of mouse dry eye with osmoprotectants significantly reduced corneal staining on day 35 compared with day 21 (schedule 2). Relative to vehicle, L-carnitine treatment of mouse dry eye for 14 days (days 21 to 35) resulted in a significant reduction in corneal staining, number of TUNEL-positive cells, and expression of TNF-α, IL-17, IL-6, or IL-1β, as well as significantly increased the number of goblet cells. CONCLUSIONS: Topical application of betaine, L-carnitine, or erythritol systematically limited progression of environmentally induced dry eye. L-carnitine can also reduce the severity of such dry-eye conditions.
    [Abstract] [Full Text] [Related] [New Search]