These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Does the length dependency of airway smooth muscle force contribute to airway hyperresponsiveness? Author: Lee-Gosselin A, Pascoe CD, Couture C, Paré PD, Bossé Y. Journal: J Appl Physiol (1985); 2013 Nov 01; 115(9):1304-15. PubMed ID: 23970527. Abstract: Airway wall remodeling and lung hyperinflation are two typical features of asthma that may alter the contractility of airway smooth muscle (ASM) by affecting its operating length. The aims of this study were as follows: 1) to describe in detail the "length dependency of ASM force" in response to different spasmogens; and 2) to predict, based on morphological data and a computational model, the consequence of this length dependency of ASM force on airway responsiveness in asthmatic subjects who have both remodeled airway walls and hyperinflated lungs. Ovine tracheal ASM strips and human bronchial rings were isolated and stimulated to contract in response to increasing concentrations of spasmogens at three different lengths. Ovine tracheal strips were more sensitive and generated greater force at longer lengths in response to acetylcholine (ACh) and K(+). Equipotent concentrations of ACh were approximately a log less for ASM stretched by 30% and approximately a log more for ASM shortened by 30%. Similar results were observed in human bronchi in response to methacholine. Morphometric and computational analyses predicted that the ASM of asthmatic subjects may be elongated by 6.6-10.4% (depending on airway generation) due to remodeling and/or hyperinflation, which could increase ACh-induced force by 1.8-117.8% (depending on ASM length and ACh concentration) and enhance the increased resistance to airflow by 0.4-4,432.8%. In conclusion, elongation of ASM imposed by airway wall remodeling and/or hyperinflation may allow ASM to operate at a longer length and to consequently generate more force and respond to lower concentration of spasmogens. This phenomenon could contribute to airway hyperresponsiveness.[Abstract] [Full Text] [Related] [New Search]