These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resting-state functional connectivity in multiple sclerosis: an examination of group differences and individual differences.
    Author: Janssen AL, Boster A, Patterson BA, Abduljalil A, Prakash RS.
    Journal: Neuropsychologia; 2013 Nov; 51(13):2918-29. PubMed ID: 23973635.
    Abstract:
    Multiple sclerosis (MS) is a neurodegenerative, inflammatory disease of the central nervous system, resulting in physical and cognitive disturbances. The goal of the current study was to examine the association between network integrity and composite measures of cognition and disease severity in individuals with relapsing-remitting MS (RRMS), relative to healthy controls. All participants underwent a neuropsychological and neuroimaging session, where resting-state data was collected. Independent component analysis and dual regression were employed to examine network integrity in individuals with MS, relative to healthy controls. The MS sample exhibited less connectivity in the motor and visual networks, relative to healthy controls, after controlling for group differences in gray matter volume. However, no alterations were observed in the frontoparietal, executive control, or default-mode networks, despite previous evidence of altered neuronal patterns during tasks of exogenous processing. Whole-brain, voxel-wise regression analyses with disease severity and processing speed composites were also performed to elucidate the brain-behavior relationship with neuronal network integrity. Individuals with higher levels of disease severity demonstrated reduced intra-network connectivity of the motor network, and the executive control network, while higher disease burden was associated with greater inter-network connectivity between the medial visual network and areas involved in visuomotor learning. Our findings underscore the importance of examining resting-state oscillations in this population, both as a biomarker of disease progression and a potential target for therapeutic intervention.
    [Abstract] [Full Text] [Related] [New Search]