These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR. Author: Bernard D, Bédard M, Bilodeau J, Lavigne P. Journal: J Biomol NMR; 2013 Oct; 57(2):103-16. PubMed ID: 23975355. Abstract: Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15(INK4B) or p21(CIP1). The C-terminus of Miz-1 contains 13 consensus C2H2 zinc finger domains (ZF). ZFs 1-4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical ββα fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5-8 (Miz 5-8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical ββα fold for C2H2 ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using (15)N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the μs-ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1-4 away from DNA.[Abstract] [Full Text] [Related] [New Search]