These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Computational insight into novel molecular recognition mechanism of different bioactive GAs and the Arabidopsis receptor GID1A.
    Author: Duan H, Li D, Liu H, Liang D, Yang X.
    Journal: J Mol Model; 2013 Oct; 19(10):4613-24. PubMed ID: 23982476.
    Abstract:
    Gibberellin (GA) is an essential plant hormone and plays a significant role during the growth and development of the higher plants. The molecular recognition mode between GA and receptor Arabidopsis thaliana GIBBERELLIN INSENSITIVE DWARF1 A (AtGID1A) was investigated by molecular docking and dynamics simulations to clarify the selective perceived mechanism of different bioactive GA molecules to AtGID1A. The 6-COOH group of GA, especially its β configuration, was found to be an indispensable pharmacophore group for GA recognition and binding to AtGID1A. Not only does a strong salt bridge interaction between the 6β-COOH group of GA and Arg244 of AtGID1A play a very important role in the GA recognition of the receptor, but also an indirect water bridge interaction between the pharmacophore group 6β-COOH of GA and the residue Tyr322 of AtGID1A is essential for the GA binding to the receptor. The site-directed residues mutant modeling study on the receptor-binding pocket confirmed that the mutations of Arg244 and Tyr322 decreased the GA binding activity due to the disappearances of the salt bridge and the hydrogen bond interaction. The 3β-OH group of GA was well known to be necessary for the GA bioactivity due to its forming a unique hydrogen bond with Tyr127 of AtGID1A. In addition, the hydrophobic interaction between GA and AtGID1A was considered a necessary factor to lock the GA active conformation and stabilize the GA-GID1A complex structure. The novel molecular recognition mode will be beneficial in elucidating the GA regulation function on the growth and development of the higher plants.
    [Abstract] [Full Text] [Related] [New Search]