These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Montmorillonite-alginate nanocomposite as a drug delivery system--incorporation and in vitro release of irinotecan. Author: Iliescu RI, Andronescu E, Ghitulica CD, Voicu G, Ficai A, Hoteteu M. Journal: Int J Pharm; 2014 Mar 25; 463(2):184-92. PubMed ID: 23998956. Abstract: The scope of the present study was the preparation and characterization of irinotecan nanocomposite beads based on montmorillonite (Mt) and sodium alginate (AL) as drug carriers. After irinotecan (I) incorporation into Mt, the resulting hybrid was compounded with alginate, and I-Mt-AL nanocomposite beads were obtained by ionotropic gelation technique. The structure and surface morphology of the hybrid and composite materials were established by means of X-ray diffraction (XRD), IR spectroscopy (FT-IR), thermal analysis (TG-DTA) and scanning electron microscopy (SEM). Irinotecan incorporation efficiency in Mt and in alginate beads was determined both by UV-vis spectroscopy and thermal analysis and was found to be high. The hybrid and composite materials were tested in vitro in simulated intestinal fluid (pH 7.4, at 37 °C) in order to establish if upon administering the beads at the site of a resected colorectal tumor, the delivery of the drug is sustained and can represent an alternative to the existing systemic chemotherapy. The in vitro drug release test results clearly suggested that Mt, and Mt along with AL were able to control the release of irinotecan by making it sustained, without any burst effect, and by reducing the released amount and the release rate. The nanocomposite beads may be a promising drug delivery system in chemotherapy.[Abstract] [Full Text] [Related] [New Search]