These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Optimisation of near-infrared reflectance model in measuring protein and amylose content of rice flour.
    Author: Xie LH, Tang SQ, Chen N, Luo J, Jiao GA, Shao GN, Wei XJ, Hu PS.
    Journal: Food Chem; 2014 Jan 01; 142():92-100. PubMed ID: 24001817.
    Abstract:
    Near-infrared reflectance spectroscopy (NIRS) has been used to predict the cooking quality parameters of rice, such as the protein (PC) and amylose content (AC). Using brown and milled flours from 519 rice samples representing a wide range of grain qualities, this study was to compare the calibration models generated by different mathematical, preprocessing treatments, and combinations of different regression algorithm. A modified partial least squares model (MPLS) with the mathematic treatment "2, 8, 8, 2" (2nd order derivative computed based on 8 data points, and 8 and 2 data points in the 1st and 2nd smoothing, respectively) and inverse multiplicative scattering correction preprocessing treatment was identified as the best model for simultaneously measurement of PC and AC in brown flours. MPLS/"2, 8, 8, 2"/detrend preprocessing was identified as the best model for milled flours. The results indicated that NIRS could be useful in estimation of PC and AC of breeding lines in early generations of the breeding programs, and for the purposes of quality control in the food industry.
    [Abstract] [Full Text] [Related] [New Search]