These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Beer thiol-containing compounds and redox stability: kinetic study of 1-hydroxyethyl radical scavenging ability.
    Author: de Almeida NE, Lund MN, Andersen ML, Cardoso DR.
    Journal: J Agric Food Chem; 2013 Oct 02; 61(39):9444-52. PubMed ID: 24007263.
    Abstract:
    The 1-hydroxyethyl radical is a central intermediate in oxidative reactions occurring in beer. The reactivity of thiol-containing compounds toward 1-hydroxyethyl radical was evaluated in beer model solutions using a competitive kinetic approach, employing the spin-trap 4-POBN as a probe and by using electron paramagnetic resonance to detect the generated 1-hydroxyethyl/4-POBN spin adduct. Thiol-containing compounds were highly reactive toward the 1-hydroxyethyl radical with apparent second-order rate constants close to the diffusion limit in water and ranging from 0.5 × 10⁹ L mol⁻¹ s⁻¹ for the His-Cys-Lys-Phe-Trp-Trp peptide to 6.1 × 10⁹ L mol⁻¹ s⁻¹ for the reduced lipid transfer protein 1 (LTP1) isolated from beer. The reactions gave rise to a moderate kinetic isotope effect (k(H)/k(D) = 2.3) suggesting that reduction of the 1-hydroxyethyl radical by thiol-containing compounds takes place by hydrogen atom abstraction from the RSH group rather than electron transfer. The content of reduced thiols in different beers was determined using a previously established method based on ThioGlo-1 as the thiol derivatization reagent and detection of the derivatized thiols by reverse-phase liquid chromatography coupled to a fluorescence detector. The total level of thiol in beer (oxidized and reduced) was determined after a reduction step employing 3,3',3″-phosphanetriyltripropanoic acid (TCEP) as the disulfide reductant. A good correlation among total protein and total thiol content in different beers was observed. The results suggest a similar ratio between reduced thiols and disulfides in all of the tested beers, which indicates a similar redox state.
    [Abstract] [Full Text] [Related] [New Search]