These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Treatment of donor cells with trichostatin A improves in vitro development and reprogramming of buffalo (Bubalus bubalis) nucleus transfer embryos. Author: Luo C, Lu F, Wang X, Wang Z, Li X, Gong F, Jiang J, Liu Q, Shi D. Journal: Theriogenology; 2013 Nov; 80(8):878-86. PubMed ID: 24007823. Abstract: It has been reported that buffalo (Bubalus bubalis) embryos reconstructed by somatic cell nucleus transfer (SCNT) can develop to the full term of gestation and result in newborn calves. However, the developmental competence of reconstructed embryos is still low. Recently, it has been reported that treating donor cells or embryos with trichostatin A (TSA) can increase the cloning efficiency in some species. Thus, the present study was undertaken to improve the development of buffalo SCNT embryos by treatment of donor cells (buffalo fetal fibroblasts) with TSA and explore the relation between histone acetylation status of donor cells and developmental competence of SCNT embryos. Treatment of donor cells with either 0.15 or 0.3 μM TSA for 48 hours resulted in a significant increase in the cleavage rate and blastocyst yield of SCNT embryos (P < 0.05). Meanwhile, the expression level of HDAC1 in donor cells was also decreased (0.4-0.6 fold, P < 0.05) by TSA treatment, although the expression level of HAT1 was not affected. Further measurement of the epigenetic maker AcH4K8 in buffalo IVF and SCNT embryos at the eight-cell stage revealed that the spatial distribution of acH4K8 staining in SCNT embryos was different from the IVF embryos. Treatment of donor cells with TSA resulted in an increase in the AcH4K8 level of SCNT embryos and similar to fertilized counterparts. These results suggest that treatment of donor cells with TSA can facilitate their nucleus reprogramming by affecting the acetylated status of H4K8 and improving the in vitro development of buffalo SCNT embryos. The AcH4K8 status at the eight-cell stage can be used as an epigenetic marker for predicting the SCNT efficiency in buffalos.[Abstract] [Full Text] [Related] [New Search]