These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DMOG ameliorates IFN-γ-induced intestinal barrier dysfunction by suppressing PHD2-dependent HIF-1α degradation.
    Author: Wang WS, Liang HY, Cai YJ, Yang H.
    Journal: J Interferon Cytokine Res; 2014 Jan; 34(1):60-9. PubMed ID: 24010824.
    Abstract:
    Hypoxia-inducible factor 1α (HIF-1α) has been well established as a protective factor for intestinal barrier function in intestinal epithelial cells. Recently, a study found that increased HIF-1α-induced intestinal barrier dysfunction. We proposed that lymphocyte-derived interferon-gamma (IFN-γ) might be responsible for the intestinal barrier dysfunction caused by increased HIF-1α. HT-29 cell monolayers were grown in the presence or absence of IFN-γ under hypoxia. Then, the transepithelial electrical resistance was measured, and HIF-1α-modulated intestinal barrier protective factors were quantified by polymerase chain reaction (PCR). PCR, western blotting, and chromatin immunoprecipitation of HIF-1α were performed. Dimethyloxalyglycine (DMOG), an inhibitor of prolyl-hydroxylases (PHDs) that stabilizes HIF-1α during normoxia, and RNA interference of PHDs were also used to identify the signal pathway between IFN-γ and HIF-1α. We demonstrated that IFN-γ caused barrier dysfunction in hypoxic HT-29 cell monolayers via suppressing HIF-1α and HIF-1α-modulated intestinal barrier protective factors. We found that IFN-γ decreased HIF-1α protein expression instead of affecting HIF-1α transcription or transcriptional activity. Study also showed that DMOG reversed the IFN-γ-induced decrease in HIF-1α protein expression. Further, we found that PHD2 is the major regulator of IFN-γ-induced HIF-1α degradation by PHD inhibition and RNA interference. We conclude that IFN-γ caused barrier dysfunction by promoting PHD-, especially PHD2-, dependent HIF-1α degradation, and DMOG or PHD2 inhibition reversed this HIF-1α suppression and ameliorated barrier dysfunction. Combined with other studies demonstrating HIF-1α activation in lymphocytes promotes IFN-γ secretion, these findings suggest a mechanism by which increased HIF-1α-induced intestinal barrier dysfunction.
    [Abstract] [Full Text] [Related] [New Search]