These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuroprotective effect of tadalafil, a PDE-5 inhibitor, and its modulation by L-NAME in mouse model of ischemia-reperfusion injury.
    Author: Gulati P, Singh N.
    Journal: J Surg Res; 2014 Jan; 186(1):475-83. PubMed ID: 24011921.
    Abstract:
    BACKGROUND: The present study investigates the neuroprotective effect of tadalafil, a selective phosphodiesterase-5 inhibitor, in a mouse model of ischemia-reperfusion injury. MATERIALS AND METHODS: Bilateral carotid artery occlusion for 12 min followed by reperfusion for 24 h was employed to produce ischemia-reperfusion-induced cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test. Degree of motor incoordination was evaluated using inclined beam walk test, rota-rod test, and lateral push test. Brain nitrite/nitrate, brain acetylcholinesterase activity, brain thiobarbituric acid reactive species, and glutathione levels were also estimated. RESULTS: Bilateral carotid artery occlusion, followed by reperfusion, produced a significant rise in cerebral infarct size, brain nitrite/nitrate levels, acetylcholinesterase activity, and thiobarbituric acid reactive species level along with a fall in glutathione. A significant impairment of memory and motor coordination was also noted. Pretreatment of tadalafil significantly attenuated the above effects of ischemia-reperfusion injury. Tadalafil-induced neuroprotective effects were significantly attenuated by administration of L-NAME, a nonselective nitric oxide synthase inhibitor. CONCLUSIONS: Results indicate that tadalafil exerts neuroprotective effects, probably through nitric oxide-dependent pathways. Therefore, phosphodiesterase-5 can be explored as an important target to contain ischemia-reperfusion injury.
    [Abstract] [Full Text] [Related] [New Search]