These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The dipeptidyl peptidase-4 inhibitor-sitagliptin modulates calcium dysregulation, inflammation, and PPARs in hypertensive cardiomyocytes.
    Author: Lee TI, Kao YH, Chen YC, Huang JH, Hsu MI, Chen YJ.
    Journal: Int J Cardiol; 2013 Oct 15; 168(6):5390-5. PubMed ID: 24012160.
    Abstract:
    BACKGROUND: Hypertension induces cardiac dysfunction, calcium (Ca(2+)) dysregulation, and arrhythmogenesis. Dipeptidyl peptidase (DPP)-4 inhibitors, an antidiabetic agent with anti-inflammation and anti-hypertension potential, may regulate peroxisome proliferator-activated receptors (PPARs)-α, -γ, and -δ and Ca(2+) homeostasis. OBJECTIVE: The purpose of this study was to investigate whether DPP-4 inhibitor, sitagliptin, can modulate PPARs and Ca(2+) handling proteins in hypertensive hearts. METHODS: A Western blot analysis was used to evaluate protein expressions of myocardial PPAR isoforms, tumor necrosis factor (TNF)-α, interleukin (IL)-6, sarcoplasmic reticulum ATPase (SERCA2a), Na(+)-Ca(2+) exchanger (NCX), ryanodine receptor (RyR), voltage-dependent Ca(2+) (CaV1.2), slow-voltage potassium currents (Kvs), angiotensin II type 1 receptor (AT1R), and receptor of advanced glycated end-products (RAGE) from Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHR), and SHR treated with sitagliptin (10mg/kg for 4weeks). Conventional microelectrodes were used to record action potentials (APs) in the ventricular myocytes from each group. RESULTS: Compared to the control group, SHR had lower cardiac PPAR-α and PPAR-δ protein expressions, but had greater cardiac PPAR-γ levels, and TNF-α, IL-6, RAGE, and AT1R protein expressions, which were ameliorated in the sitagliptin-treated SHR. SHR had prolonged QT interval and AP duration with less SERCA2a and RyR, and greater CaV1.2 expressions, which were also attenuated in sitagliptin-treated SHR. CONCLUSIONS: Sitagliptin significantly changed the cardiac electrophysiological characteristics and Ca(2+) regulation, which may have been caused by its effects on cardiac PPARs, proinflammatory cytokines, and AT1R.
    [Abstract] [Full Text] [Related] [New Search]