These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cholesteryl hyaluronic acid-coated, reduced graphene oxide nanosheets for anti-cancer drug delivery. Author: Miao W, Shim G, Kang CM, Lee S, Choe YS, Choi HG, Oh YK. Journal: Biomaterials; 2013 Dec; 34(37):9638-47. PubMed ID: 24016852. Abstract: Here, we report hyaluronyl reduced graphene oxide (rGO) nanosheets as a tumor-targeting delivery system for anticancer agents. Hyaluronyl-modified rGO nanosheets were prepared by synthesizing cholesteryl hyaluronic acid (CHA) and using it to coat rGO nanosheets, yielding CHA-rGO. Compared with rGO, CHA-rGO nanosheets showed increased colloidal stability under physiological conditions and improved in vivo safety, with a survival rate of 100% after intravenous administration of 40 mg/kg in mice. The doxorubicin (Dox) loading capacity of CHA-rGO was 4-fold greater than that of rGO. Uptake of Dox by CD44-overexpressing KB cells was higher for CHA-rGO than for rGO, and was decreased in the presence of hyaluronic acid through competition for CD44 receptor binding. After intravenous administration in tumor-bearing mice, CHA-rGO/Dox showed higher tumor accumulation than rGO/Dox. The in vivo antitumor efficacy of Dox delivered by CHA-rGO was significantly increased compared with free Dox or rGO/Dox. In CHA-rGO/Dox-treated mice, tumor weights were reduced to 14.1% ± 0.1% of those in untreated mice. Our findings indicate that CHA-rGO nanosheets possess greater stability, safety, drug-loading capacity, and CD44-mediated delivery of Dox than rGO nanosheets. These beneficial properties of CHA-rGO improved the distribution of Dox to tumors and facilitated the cellular uptake of Dox by CD44-overexpressing tumor cells, resulting in enhanced anticancer effects.[Abstract] [Full Text] [Related] [New Search]