These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probing ultrafast dynamics in photoexcited pyrrole: timescales for pi sigma* mediated H-atom elimination.
    Author: Roberts GM, Williams CA, Yu H, Chatterley AS, Young JD, Ullrich S, Stavros VG.
    Journal: Faraday Discuss; 2013; 163():95-116; discussion 117-38. PubMed ID: 24020198.
    Abstract:
    The heteroaromatic ultraviolet chromophore pyrrole is found as a subunit in a number of important biomolecules: it is present in heme, the non-protein component of hemoglobin, and in the amino acid tryptophan. To date there have been several experimental studies, in both the time- and frequency-domains, which have interrogated the excited state dynamics of pyrrole. In this work, we specifically aim to unravel any differences in the H-atom elimination dynamics from pyrrole across an excitation wavelength range of 250-200 nm, which encompasses: (i) direct excitation to the (formally electric dipole forbidden) 1(1)pisigma* (1A2) state; and (ii) initial photoexcitation to the higher energy 1 pipi* (1B2) state. This is achieved by using a combination of ultrafast time-resolved ion yield and time-resolved velocity map ion imaging techniques in the gas phase. Following direct excitation to 1(1)pisigma* (1A2) at 250 nm, we observe a single time-constant of 126 +/- 28 fs for N-H bond fission. We assign this to tunnelling out of the quasi-bound 3s Rydberg component of the 1(1)pisigma* (1A2) surface in the vertical Franck-Condon region, followed by non-adiabatic coupling through a 1(1)pisigma*/S(0) conical intersection to yield pyrrolyl radicals in their electronic ground state (C4H4N(X)) together with H-atoms. At 238 nm, direct excitation to, and N-H dissociation along, the 1(1)pisigma* (1A2) surface is observed to occur with a time-constant of 46 +/- 22 fs. Upon initial population of the 1pipi* (1B2) state at 200 nm, a rapid 1pipi* (1B2) --> 1(1)pisigma* (1A2) --> N-H fission process takes place within 52 +/- 12 fs. In addition to ultrafast N-H bond cleavage at 200 nm, we also observe the onset of statistical unimolecular H-atom elimination from vibrationally hot S(0) ground state species, formed after the relaxation of excited electronic states, with a time-constant of 1.0 +/- 0.4 ns. Analogous measurements on pyrrole-d1 reveal that these statistical H-atoms are released only through C-H bond cleavage.
    [Abstract] [Full Text] [Related] [New Search]