These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Triplet state formation in photoexcited slip-stacked perylene-3,4:9,10-bis(dicarboximide) dimers on a xanthene scaffold.
    Author: Lefler KM, Brown KE, Salamant WA, Dyar SM, Knowles KE, Wasielewski MR.
    Journal: J Phys Chem A; 2013 Oct 10; 117(40):10333-45. PubMed ID: 24032482.
    Abstract:
    Two covalent perylene-3,4:9,10-bis(dicarboximide) (PDI) dimers in which the PDI molecules are attached to a xanthene (Xan) scaffold in which the long axes of the two π-π stacked PDI molecules are slipped by 4.3 and 7.9 Å were prepared. These dimers are designed to mimic J-aggregates and provide insights into the photophysics of triplet state formation in PDI aggregates that target organic electronics. Using ultrafast transient absorption and stimulated Raman spectroscopy, the mechanism of (3)*PDI formation was found to depend strongly on a competition between the rate of Xan(•+)-PDI(•-) formation involving the spacer group and the rate of excimer-like state formation. Which mechanism is favored depends on the degree of electronic coupling between the two PDI molecules and/or solvent polarity. Singlet exciton fission to produce (3)*PDI does not compete kinetically with these processes. The excimer-like state decays relatively slowly with τ = 28 ns to produce (3)*PDI, while charge recombination of Xan(•+)-PDI(•-) yields (3)*PDI more than an order of magnitude faster. The perpendicular orientation between the π orbitals of PDI and the Xan bridge provides a large enough orbital angular momentum change to greatly increase the intersystem crossing rate via Xan(•+)-PDI(•-) → (3)*PDI charge recombination. These results highlight the importance of understanding inter-chromophore electronic coupling in a wide range of geometries as well as the active role that molecular spacers can play in the photophysics of covalent models for self-assembled chromophore aggregates.
    [Abstract] [Full Text] [Related] [New Search]