These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Computational method for high resolution spectral analysis of fractionated atrial electrograms.
    Author: Ciaccio EJ, Biviano AB, Garan H.
    Journal: Comput Biol Med; 2013 Oct; 43(10):1573-82. PubMed ID: 24034749.
    Abstract:
    BACKGROUND: The discrete Fourier transform (DFT) is often used as a spectral estimator for analysis of complex fractionated atrial electrograms (CFAE) acquired during atrial fibrillation (AF). However, time resolution can be unsatisfactory, as the frequency resolution is proportional to rate/time interval. In this study we compared the DFT to a new spectral estimator with improved time-frequency resolution. METHOD: Recently, a novel spectral estimator (NSE) based upon signal averaging was derived and implemented computationally. The NSE is similar to the DFT in that both estimators model the autocorrelation function to form the power spectrum. However, as derived in this study, NSE frequency resolution is proportional to rate/period(2) and thus unlike the DFT, is not directly dependent on the window length. We hypothesized that the NSE would provide improved time resolution while maintaining satisfactory frequency resolution for computation of CFAE spectral parameters. Window lengths of 8s, 4s, 2s, 1s, and 0.5s were used for analysis. Two criteria gauged estimator performance. Firstly, a periodic electrogram pattern with phase jitter was embedded in interference. The error in detecting the frequency of the periodic pattern was determined. Secondly, significant differences in spectral parameters for paroxysmal versus persistent AF data, which have known dissimilarities, were determined using the DFT versus NSE methods. The parameters measured were the dominant amplitude, dominant frequency, and mean spectral profile. RESULTS: At all time resolutions, the error in detecting the frequency of the repeating electrogram pattern was less for NSE than for DFT (p<0.001). The DFT was accurate to 2s time resolution/0.5 Hz frequency resolution, while the NSE was accurate to 0.5s time resolution/0.05 Hz frequency resolution. At all time resolutions, significant differences in the dominant amplitude spectral parameter for paroxysmal versus persistent CFAE were greater using NSE than DFT (p<0.0001). For three of five time resolutions, the NSE had greater significant differences than DFT for discriminating the dominant frequency and mean spectral profile parameters between AF types. CONCLUSIONS: The results suggest that the NSE has improved performance versus DFT for measurement of CFAE spectral properties.
    [Abstract] [Full Text] [Related] [New Search]