These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of the interposition of ceramic spacers on the degree of conversion and the hardness of resin cements.
    Author: Calgaro PA, Furuse AY, Correr GM, Ornaghi BP, Gonzaga CC.
    Journal: Braz Oral Res; 2013; 27(5):403-9. PubMed ID: 24036978.
    Abstract:
    This study evaluated: I) the effect of photo-activation through ceramics on the degree of conversion (DC) and on the Knoop hardness (KHN) of light- and dual-cured resin cements; and II) two different protocols for obtaining the spectra of uncured materials, to determine the DC of a dual-cured resin cement. Thin films of cements were photo-activated through ceramics [feldspathic porcelain (FP); lithium disilicate glass-ceramics of low translucency (e.max-LT), medium opacity (e.max-MO) and high translucency (e.max-HT); glass-infiltrated alumina composite (IC) and polycrystalline zirconia (ZR)] with thicknesses of 1.5 and 2.0 mm. DC was analyzed by Fourier transform infrared (FTIR) spectroscopy. Two protocols were used to obtain the spectra of the uncured materials: I) base and catalyst pastes were mixed, and II) thin films of base and catalyst pastes were obtained separately, and an average was obtained. KHN assessment was performed with cylindrical specimens. The results were analyzed by ANOVA and Tukey's test (α= 0.05). The light-cured cement showed higher DC (61.9%) than the dual-cured cement (55.7%). The DC varied as follows: FP (65.4%), e.max-HT (65.1%), e.max-LT (61.8%), e.max-MO (60.9%), ZR (54.8%), and IC (44.9%). The light-cured cement showed lower KHN (22.0) than the dual-cured (25.6) cement. The cements cured under 1.5 mm spacers showed higher KHN (26.2) than when polymerized under 2.0 mm ceramics (21.3). Regarding the two protocols, there were significant differences only in three groups. Thus, both methods can be considered appropriate. The physical and mechanical properties of resin cements may be affected by the thickness and microstructure of the ceramic material interposed during photo-activation.
    [Abstract] [Full Text] [Related] [New Search]