These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional analysis of the Shiga toxin and Shiga-like toxin type II variant binding subunits by using site-directed mutagenesis. Author: Jackson MP, Wadolkowski EA, Weinstein DL, Holmes RK, O'Brien AD. Journal: J Bacteriol; 1990 Feb; 172(2):653-8. PubMed ID: 2404947. Abstract: The B subunit of Shiga toxin and the Shiga-like toxins (SLTs) mediates receptor binding, cytotoxic specificity, and extracellular localization of the holotoxin. While the functional receptor for Shiga toxin, SLT type I (SLT-I), and SLT-II is the glycolipid designated Gb3, SLT-II variant (SLT-IIv) may use a different glycolipid receptor. To identify the domains responsible for receptor binding, localization in Escherichia coli, and recognition by neutralizing monoclonal antibodies, oligonucleotide-directed site-specific mutagenesis was used to alter amino acid residues in the B subunits of Shiga toxin and SLT-IIv. Mutagenesis of a well-conserved hydrophilic region near the amino terminus of the Shiga toxin B subunit rendered the molecule nontoxic but did not affect immunoreactivity or holotoxin assembly. In addition, elimination of one cysteine residue, as well as truncation of the B polypeptide by 5 amino acids, caused a total loss of activity. Changing a glutamate to a glutamine at the carboxyl terminus of the Shiga toxin B subunit resulted in the loss of receptor binding and immunoreactivity. However, the corresponding mutation in the SLT-IIv B subunit (glutamine to glutamate) did not reduce the levels of cytotoxicity but did affect extracellular localization of the holotoxin in E. coli.[Abstract] [Full Text] [Related] [New Search]