These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Virtual reality-based simulation training for ventriculostomy: an evidence-based approach.
    Author: Schirmer CM, Elder JB, Roitberg B, Lobel DA.
    Journal: Neurosurgery; 2013 Oct; 73 Suppl 1():66-73. PubMed ID: 24051886.
    Abstract:
    BACKGROUND: Virtual reality (VR) simulation-based technologies play an important role in neurosurgical resident training. The Congress of Neurological Surgeons (CNS) Simulation Committee developed a simulation-based curriculum incorporating VR simulators to train residents in the management of common neurosurgical disorders. OBJECTIVE: To enhance neurosurgical resident training for ventriculostomy placement using simulation-based training. METHODS: A course-based neurosurgical simulation curriculum was introduced at the Neurosurgical Simulation Symposium at the 2011 and 2012 CNS annual meetings. A trauma module was developed to teach ventriculostomy placement as one of the neurosurgical procedures commonly performed in the management of traumatic brain injury. The course offered both didactic and simulator-based instruction, incorporating written and practical pretests and posttests and questionnaires to assess improvement in skill level and to validate the simulators as teaching tools. RESULTS: Fourteen trainees participated in the didactic component of the trauma module. Written scores improved significantly from pretest (75%) to posttest (87.5%; P < .05). Seven participants completed the ventriculostomy simulation. Significant improvements were observed in anatomy (P < .04), burr hole placement (P < .03), final location of the catheter (P = .05), and procedure completion time (P < .004). Senior residents planned a significantly better trajectory (P < .01); junior participants improved most in terms of identifying the relevant anatomy (P < .03) and the time required to complete the procedure (P < .04). CONCLUSION: VR ventriculostomy placement as part of the CNS simulation trauma module complements standard training techniques for residents in the management of neurosurgical trauma. Improvement in didactic and hands-on knowledge by course participants demonstrates the usefulness of the VR simulator as a training tool.
    [Abstract] [Full Text] [Related] [New Search]