These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recombinant thermostable AP exonuclease from Thermoanaerobacter tengcongensis: cloning, expression, purification, properties and PCR application.
    Author: Dabrowski S, Brillowska-Dabrowska A, Ahring BK.
    Journal: Pol J Microbiol; 2013; 62(2):121-9. PubMed ID: 24053015.
    Abstract:
    Apurinic/apyrimidinic (AP) sites in DNA are considered to be highly mutagenic and must be corrected to preserve genetic integrity, especially at high temperatures. The gene encoding a homologue of AP exonuclease was cloned from the thermophilic anaerobic bacterium Thermoanaerobacter tengcongensis and transformed into Escherichia coli. The protein product showed high identity (80%) to human Ape1 nuclease, whereas to E. coli exonuclease III - 78%. This is the first prokaryotic AP nuclease that exhibits such high identity to human Ape1 nuclease. The very high expression level (57% of total soluble proteins) of fully active and soluble His6-tagged Tte AP enzyme with His6-tag on C-terminal end was obtained in Escherichia coli Rosetta (DE3) pLysS. The active enzyme was purified up to 98% homogeneity in one chromatographic step using metal-affinity chromatography on Ni(2+)-IDA-Sepharose resin. The yield was 90 mg (14000 kU) of pure His6-tagged Tte AP (153 kU/mg) from 1 liter of culture. The optimal conditions of Tte AP endo-, exonuclease and 3'-nuclease activity were investigated using fluorescein labeled dsDNA with inserted AP sites and ssDNA. Optimal Tte AP endonuclease activity was observed at 70-75 degrees C, pH 8.0 and at low Mg2+ concentration (0.5 mM). Higher Mg2+ concentration (> 1 mM) enhanced 3'-5' exonuclease activity and at Mg2+ concentration > 2.0 mM 3' nuclease activity was observed. Because of the endonuclease activity of Tte AP exonuclease, the enzyme was applied in PCR amplification of long DNA templates. Tte AP exonuclease eliminated AP-sites in DNA template and improved the efficiency of DNA amplification.
    [Abstract] [Full Text] [Related] [New Search]