These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Author: Aravindan V, Sundaramurthy J, Kumar PS, Shubha N, Ling WC, Ramakrishna S, Madhavi S. Journal: Nanoscale; 2013 Nov 07; 5(21):10636-45. PubMed ID: 24057339. Abstract: We successfully demonstrated the performance of novel, one-dimensional electrospun nanofibers as cathode, anode and separator-cum-electrolyte in full-cell Li-ion configuration. The cathode, LiMn2O4 delivered excellent cycle life over 800 cycles at current density of 150 mA g(-1) with capacity retention of ~93% in half-cell assembly (Li/LiMn2O4). Under the same current rate, the anode, anatase phase TiO2, rendered ~77% initial reversible capacity after 500 cycles in half-cell configuration (Li/TiO2). Gelled electrospun PVdF-HFP exhibits liquid-like conductivity of ~3.2 mS cm(-1) at ambient temperature conditions (30 °C). For the first time, a full-cell is fabricated with enitrely electrospun one-dimensional materials by adjusting the mass loading of cathode with respect to anode in the presence of gelled PVdF-HFP membrane as a separator-cum-electrolyte. Full-cell LiMn2O4|gelled PVdF-HFP|TiO2 delivered good capacity characteristics and excellent cyclability with an operating potential of ∼2.2 V at a current density of 150 mA g(-1). Under harsh conditions (16 C rate), the full-cell showed a very stable capacity behavior with good calendar life. This clearly showed that electrospinning is an efficient technique for producing high performance electro-active materials to fabricate a high performance Li-ion assembly for commercialization without compromising the eco-friendliness and raw material cost.[Abstract] [Full Text] [Related] [New Search]