These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effectiveness of stretch-shortening cycling in upper-limb extensor muscles during elite cross-country skiing with the double-poling technique.
    Author: Zoppirolli C, Holmberg HC, Pellegrini B, Quaglia D, Bortolan L, Schena F.
    Journal: J Electromyogr Kinesiol; 2013 Dec; 23(6):1512-9. PubMed ID: 24064180.
    Abstract:
    This investigation was designed to evaluate the effectiveness of stretch-shortening cycling (SSC(EFF)) in upper-limb extensor muscles while cross-country skiing using the double-poling technique (DP). To this end, SSC(EFF) was analyzed in relation to DP velocity and performance. Eleven elite cross-country skiers performed an incremental test to determine maximal DP velocity (V(max)). Thereafter, cycle characteristics, elbow joint kinematics and poling forces were monitored on a treadmill while skiing at two sub-maximal and racing velocity (85% of V(max)). The average EMG activities of the triceps brachii and latissimus dorsi muscles were determined during the flexion and extension sub-phases of the poling cycle (EMG(FLEX), EMG(EXT)), as well as prior to pole plant (EMG(PRE)). SSC(EFF) was defined as the ratio of aEMG(FLEX) to aEMG(EXT). EMG(PRE) and EMG(FLEX) increased with velocity for both muscles (P < 0.01), as did SSC(EFF) (from 0.9 ± 0.3 to 1.3 ± 0.5 for the triceps brachii and from 0.9 ± 0.4 to 1.5 ± 0.5 for the latissimus dorsi) and poling force (from 253 ± 33 to 290 ± 36N; P < 0.05). Furthermore, SSC(EFF) was positively correlated to Vmax, to EMG(PRE) and EMG(FLEX) (P < 0.05). The neuromuscular adaptations made at higher velocities, when more poling force must be applied to the ground, exert a major influence on the DP performance of elite cross-country skiers.
    [Abstract] [Full Text] [Related] [New Search]