These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endogenous adenosine restrains renin release in conscious rats.
    Author: Kuan CJ, Wells JN, Jackson EK.
    Journal: Circ Res; 1990 Mar; 66(3):637-46. PubMed ID: 2407369.
    Abstract:
    The purpose of this study was to test the hypothesis that endogenous adenosine functions to restrain the renin release response to pharmacological and pathophysiological stimuli. To achieve this objective, we examined the effects of an adenosine receptor antagonist, 1,3-dipropyl-8-(p-sulfophenyl)xanthine (DPSPX), on the renin release response induced by acute administration of hydralazine or by chronic clipping of the left renal artery (renovascular hypertensive rats). In conscious, unrestrained rats, DPSPX significantly increased plasma renin activity (PRA) in control rats, in rats treated with hydralazine, and in renovascular hypertensive rats. The effect of DPSPX on PRA was significantly greater in rats treated with hydralazine or in renovascular hypertensive rats compared with control rats. DPSPX did not influence arterial blood pressure in any group, did not affect the measurement of PRA, and did not alter the elimination of renin activity from the circulation. Additional experiments were performed in the in situ autoperfused kidney so that the effects of DPSPX on renal hemodynamics and renal excretory function could be assessed. In this experimental model, DPSPX also increased PRA in hydralazine-treated rats and in renovascular hypertensive rats without affecting arterial pressure, renal blood flow, or sodium excretion. In a final set of studies in conscious, unrestrained rats, adenosine deaminase increased PRA in a dose-dependent manner in hydralazine-treated rats and significantly increased the slope of the relation between PRA and the depressor response to hydralazine. We conclude: 1) Although the kidney has both A1 and A2 adenosine receptors mediating inhibitory and stimulatory actions, respectively, on renin release, the dominant effect of endogenous adenosine on renin release is inhibitory. 2) Even under basal physiological conditions, endogenous adenosine tonically inhibits renin release. 3) This inhibitory effect is augmented whenever the renin-angiotensin system is stimulated regardless of the approach used to activate renin release. 4) Endogenous adenosine negatively modulates renin release by a direct effect on juxtaglomerular cells.
    [Abstract] [Full Text] [Related] [New Search]