These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of the spinal NALP1 inflammasome in neuropathic pain and aspirin-triggered-15-epi-lipoxin A4 induced analgesia.
    Author: Li Q, Tian Y, Wang ZF, Liu SB, Mi WL, Ma HJ, Wu GC, Wang J, Yu J, Wang YQ.
    Journal: Neuroscience; 2013 Dec 19; 254():230-40. PubMed ID: 24076348.
    Abstract:
    Neuroinflammation plays an important role in nerve-injury-induced neuropathic pain, but the explicit molecular mechanisms of neuroinflammation in neuropathic pain remain unclear. As one of the most critical inflammatory cytokines, interleukin-1β (IL-1β) has been regarded as broadly involved in the pathology of neuropathic pain. The inflammasome caspase-1 platform is one primary mechanism responsible for the maturation of IL-1β. Lipoxins, a type of endogenous anti-inflammatory lipid, have proved to be effective in relieving neuropathic pain behaviors. The present study was designed to examine whether the inflammasome caspase-1 IL-1β platform is involved in chronic constriction injury (CCI)-induced neuropathic pain and in lipoxin-induced analgesia. After rats were subjected to the CCI surgery, mature IL-1β was significantly increased in the ipsilateral spinal cord, and the inflammasome platform consisting of NALP1 (NAcht leucine-rich-repeat protein 1), caspase-1 and ASC (apoptosis-associated speck-like protein containing a caspase-activating recruitment domain) was also activated in spinal astrocytes and neurons, especially at the superficial laminae of the spinal dorsal horn; The aspirin-triggered-15-epi-lipoxin A4 (ATL), which shares the potent actions of the endogenous lipoxins, was administered to the CCI rats. Repeated intrathecal injection with ATL markedly attenuated the CCI-induced thermal hyperalgesia and significantly inhibited NALP1 inflammasome activation, caspase-1 cleavage, and IL-1β maturation. These results suggested that spinal NALP1 inflammasome was involved in the CCI-induced neuropathic pain and that the analgesic effect of ATL was associated with suppressing NALP1 inflammasome activation.
    [Abstract] [Full Text] [Related] [New Search]