These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of solution chemistry on the release of multiwalled carbon nanotubes from silica surfaces. Author: Yi P, Chen KL. Journal: Environ Sci Technol; 2013; 47(21):12211-8. PubMed ID: 24079821. Abstract: The release of multiwalled carbon nanotubes (MWNTs) that were deposited on silica surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). MWNTs were deposited on silica surfaces at elevated NaCl and CaCl2 concentrations before being rinsed with eluents of different solution chemistries to induce their remobilization. Energetically speaking, the MWNTs were released from the primary energy minimum when the background NaCl or CaCl2 concentrations were decreased at pH 7.1. The increase in electrostatic repulsion between MWNTs and silica likely caused a reduction in the energy barrier, which enabled the release of MWNTs. The degree of release increased in a stepwise fashion when the nanotubes were sequentially exposed to eluents of decreasing electrolyte concentrations, possibly due to the heterogeneity in nanotube surface charge densities. The degree of release via a successive reduction in NaCl concentration was lower at pH 4.0 than at 7.1 due to MWNTs and silica surfaces exhibiting a less negative surface charge at pH 4.0. Most of the deposited MWNTs were released when the pH was decreased from 7.1 to 4.0 at 1.5 mM CaCl2. This was attributed to the elimination of calcium bridging between the carboxyl groups on MWNTs and silanol groups on silica surfaces.[Abstract] [Full Text] [Related] [New Search]