These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Herbacetin, a constituent of ephedrae herba, suppresses the HGF-induced motility of human breast cancer MDA-MB-231 cells by inhibiting c-Met and Akt phosphorylation. Author: Hyuga S, Hyuga M, Yoshimura M, Amakura Y, Goda Y, Hanawa T. Journal: Planta Med; 2013 Nov; 79(16):1525-30. PubMed ID: 24081687. Abstract: Ephedrae herba suppresses hepatocyte growth factor-induced cancer cell motility by inhibiting tyrosine phosphorylation of the hepatocyte growth factor receptor, c-Met, and the PI3K/Akt pathway. Moreover, Ephedrae herba directly inhibits the tyrosine-kinase activity of c-Met. Ephedrine-type alkaloids, which are the active component of Ephedrae herba, do not affect hepatocyte growth factor-c-Met-Akt signalling, prompting us to study other active molecules in the herb. We recently discovered herbacetin glycosides and found that their aglycon, herbacetin, inhibits hepatocyte growth factor-c-Met-Akt signalling. This study revealed a novel biological activity of herbacetin. Herbacetin suppressed hepatocyte growth factor-induced motility in human breast cancer MDA-MB-231 cells by inhibiting c-Met and Akt phosphorylation and directly inhibiting c-Met tyrosine kinase activity. The effects of herbacetin were compared to those of kaempferol, apigenin, and isoscutellarein, all of which have similar structures. Herbacetin inhibition of hepatocyte growth factor-induced motility was the strongest of those for the tested flavonols, and only herbacetin inhibited the hepatocyte growth factor-induced phosphorylation of c-Met. These data suggest that herbacetin is a novel Met inhibitor with a potential utility in cancer therapeutics.[Abstract] [Full Text] [Related] [New Search]