These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An improved plant regeneration and Agrobacterium - mediated transformation of red pepper (Capsicum annuum L.).
    Author: Kumar RV, Sharma VK, Chattopadhyay B, Chakraborty S.
    Journal: Physiol Mol Biol Plants; 2012 Oct; 18(4):357-64. PubMed ID: 24082498.
    Abstract:
    Capsicum annuum (red pepper) is an important spice cum vegetable crop in tropical and subtropical countries. Here, we report an effective and reproducible auxin free regeneration method for six different red pepper cultivars (ACA-10, Kashi Anmol, LCA-235, PBC-535, Pusa Jwala and Supper) using hypocotyl explants and an efficient Agrobacterium-mediated transformation protocol. The explants (hypocotyls, cotyledonary leaves and leaf discs) collected from axenic seedlings of six red pepper cultivars were cultured on either hormone free MS medium or MS medium supplemented with BAP alone or in combination with IAA. Inclusion of IAA in the regeneration medium resulted in callus formation at the cut ends of explants, formation of rosette leaves and ill defined shoot buds. Regeneration of shoot buds could be achieved from hypocotyls grown in MS medium supplemented with different concentrations of BAP unlike other explants which failed to respond. Incorporation of GA3 in shoot elongation medium at 0.5 mg/l concentration enhanced the elongation in two cultivars, LCA-235 and Supper, while other cultivars showed no significant response. Chilli cultivar, Pusa Jwala was transformed with βC1 ORF of satellite DNA β molecule associated with Chilli leaf curl Joydebpur virus through Agrobacterium tumefaciens. Transgene integration in putative transformants was confirmed by PCR and Southern hybridization analysis.
    [Abstract] [Full Text] [Related] [New Search]