These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Self-association of lysozyme. Thermochemical measurements: effect of chemical modification of Trp-62, Trp-108, and Glu-35. Author: Banerjee SK, Pogolotti A, Rupley JA. Journal: J Biol Chem; 1975 Oct 25; 250(20):8260-6. PubMed ID: 240855. Abstract: Heats of dilution and of saccharide binding for hen egg white lysozyme have been measured at 30 degrees, 0.1 ionic strength, and pH 7 over the range 3 to 95 mg of protein/ml. The concentration dependence of the apparent relative molar enthalpy of lysozyme derived from these results gives the thermodynamic parameters for the formation of an intermolecular contact in an indefinite (head-to-tail) self-association process as delta G 0 = -3.9 kcal/mol, delta H 0 = -6.4 kcal/mol, and delta S 0 = -8,3 e.u. Oxindolealanine-62-lysozyme does not undergo self-association reactions that can be detected calorimetrically. This derivative reacts with native lysozyme to form hybrid polymeric species with free energy and enthalpy of interaction similar to those for the polymers of native lysozyme. These results are consistent with the intermolecular contact in the self-assocaition of lysozyme being asymmetric (head-to-tail). The heat of dilution of the derivative of lysozyme in which Glu-35 is blocked as the ester with oxindolealanine-108 is like that observed for native lysozyme in acid solution and is independent of pH. The concentration difference spectrum that develops through self-association is of the shape expected for introduction of an indole chromophore into a charge-free region of the intermolecular contact. The foregoing results indicate that Glu-35 and Trp-62 are part of the contact, that perturbation of Trp-108 does not make a principle contribution to the concentration difference spectrum, and that no acid group other than Glu-35 is perturbed by self-association. There is a small change in the heat of (GlcNAc)3 binding over the range 0.005 to 0.034 M saccharide. These data give the value of -1 kcal/mol for the enthalpy change for formation of the 2:1 saccharide-enzyme complex (ES2) from ES and S.[Abstract] [Full Text] [Related] [New Search]