These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Developmental assessment of spinal cord and cortical evoked potentials after tibial nerve stimulation: effects of age and stature on normative data during childhood. Author: Gilmore RL, Bass NH, Wright EA, Greathouse D, Stanback K, Norvell E. Journal: Electroencephalogr Clin Neurophysiol; 1985 Jul; 62(4):241-51. PubMed ID: 2408871. Abstract: Somesthetic information from lower extremities is processed by cerebral cortex after traversing the sensory pathways of peripheral nerve, spinal cord, brain-stem and thalamus. Clinical utility of somatosensory evoked potentials (SSEPs) during human development requires systematic analysis of normative data acquired during various stages of body growth and nervous system maturation. Accordingly, SSEPs after tibial nerve stimulation were studied in 32 normal awake children (1-8 years old) and compared with values obtained in young adults (18-40 years old). Potentials were recorded from the tibial nerve (N5), first lumbar spinous process (N14), seventh cervical spinous process (N20) and from the scalp, 2 cm behind the vertex (P28). In all children studied, the N5, N14 and N20 latencies were positively correlated with age and height yielding a predictive nomogram. An extremely variable electropositive cortical SSEP was recorded from Cz' which did not show a highly predictable linear relationship in association with a relatively poor correlation coefficient for height and age. It may be concluded that between 1 and 8 years of normal postnatal development, latencies reflecting peripheral nerve and lumbar spinal cord vary directly with height and age and can be represented by a simple cable model of a lengthening myelinated pathway. In contrast, the latency of the cortical SSEP reflects asynchronous maturation of elongating polysynaptic pathways and apparently requires a more complex model for prediction in order to enhance its clinical utility.[Abstract] [Full Text] [Related] [New Search]