These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neonatal rat islet cell cultures synthesize insulin-like growth factor I. Author: Romanus JA, Rabinovitch A, Rechler MM. Journal: Diabetes; 1985 Jul; 34(7):696-702. PubMed ID: 2408950. Abstract: Monolayer cultures of islet B-cells were established from neonatal rat pancreas. Serum-free media conditioned by these cultures for 72 h were concentrated and fractionated on Sephadex G-50 at acid pH into a high-molecular-weight pool containing binding protein for insulin-like growth factors (IGFs) and a low-molecular-weight pool containing IGFs. IGF activity in the IGF pool was demonstrated by a specific radioreceptor assay using rat liver plasma membranes and 125I-labeled rat IGF-II. The IGF in islet cell media was characterized further by radioimmunoassays specific for human IGF-I and for rat IGF-II. Islet cell IGF was identified as predominantly IGF-I or a closely related species and not IGF-II. Levels of approximately 15-50 ng IGF-I (based on human IGF-I standard)/10(6) islet cells accumulated in media after 72 h, and presumably represented synthesis by the islet cells. Concentrations of IGF-I attained in culture media, approximately 0.1 ng/ml, were sufficient to stimulate [3H]thymidine incorporation into B-cells. Growth hormone did not consistently increase IGF-I synthesis, suggesting that the previously described effects of growth hormone on islet cell replication do not result from stimulation of IGF-I synthesis by islet cells. Thus, although the IGF-I synthesized by islet cells may be a physiologically relevant growth factor for these cells, the mitogenic effects of growth hormone in islet cells appear to be independent and not mediated by IGF-I.[Abstract] [Full Text] [Related] [New Search]