These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Korean red ginseng extract induces proliferation to differentiation transition of human acute promyelocytic leukemia cells via MYC-SKP2-CDKN1B axis.
    Author: Jo S, Lee H, Kim S, Lee CH, Chung H.
    Journal: J Ethnopharmacol; 2013 Nov 25; 150(2):700-7. PubMed ID: 24095829.
    Abstract:
    ETHNOPHARMACOLOGICAL RELEVANCE: Korean red ginseng has been used as traditional medicine in East Asia. Recent scientific research revealed multiple effects of Korean red ginseng, including anticancer activity. To evaluate the effect of Korean red ginseng extract (KRGE) in acute promyelocytic leukemia (APL) and elucidate its molecular mechanism. MATERIALS AND METHODS: NB4 cells were treated with 1mg/ml KRGE for 48 h and examined for cell proliferation and differentiation. Cell cycle distribution of KRGE-treated cells was analyzed and the expression level of G1 phase regulators was determined. MYC was overexpressed by retroviral transduction and its effect on SKP2 and CDKN1B gene expression, cell proliferation, cell cycle and differentiation was evaluated in KRGE-treated cells. RESULTS: KRGE alone was sufficient to induce granulocytic differentiation accompanied with growth inhibition. KRGE treatment resulted in cell cycle arrest at the G1 phase with augmented Cdkn1b proteins without changes in transcript levels. Cycloheximide treatment revealed reduced degradation of Cdkn1b protein by KRGE. In addition, KRGE treatment reduced expression of MYC and SKP2 genes, both at mRNA and protein levels. Upon ectopic expression of MYC, the effect of KRGE was reversed with lesser reduction and induction of SKP2 gene and Cdkn1b protein, respectively. Taken together, these results suggest a sequential molecular mechanism from MYC reduction, SKP2 reduction, Cdkn1b protein stabilization, G1 phase arrest to granulocytic differentiation by KRGE in human APL. CONCLUSIONS: KRGE induces leukemic proliferation to differentiation transition in APL through modulation of the MYC-SKP2-CDKN1B axis.
    [Abstract] [Full Text] [Related] [New Search]