These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rapid facilitation of ultrasound production and lordosis in female hamsters by horizontal cuts between the septum and preoptic area.
    Author: Floody OR, Czipri SL.
    Journal: Physiol Behav; 2014 Jan 17; 123():33-40. PubMed ID: 24095932.
    Abstract:
    Horizontal cuts between the septum and preoptic area (anterior roof deafferentation, or ARD) dramatically affect sexual behavior, and in ways that could explain a variety of differences across behavioral categories (precopulatory, copulatory), species, and the sexes. Yet little is known about how these effects develop. Such information would be useful generally and could be pivotal in clarifying the mechanism for ultrasonic vocalization in female hamsters. Ultrasounds serve these animals as precopulatory signals that can attract males and help initiate mating. Their rates can be increased by either ARD or lesions of the ventromedial hypothalamus (VMN). If these effects are independent, they would require a mechanism that includes multiple structures and pathways within the forebrain and hypothalamus. However, it currently is not clear if they are independent: VMN lesions could affect vocalization by causing incidental damage to the same fibers targeted by ARD. Fortunately, past studies of VMN lesions have described a response with a very distinctive time course. This raises the possibility of assessing the independence of the two lesion effects by describing just the development of the response to ARD. To accomplish this, female hamsters were observed for levels of ultrasound production and lordosis before and after control surgery or ARD. As expected, both behaviors were facilitated by these cuts. Further, these effects began to appear by two days after surgery and were fully developed by six days. These results extend previous descriptions of the ARD effect by describing its development and time course. In turn, the rapid responses to ARD suggest that these cuts trigger disinhibitory changes in pathways that differ from those affected by VMN lesions.
    [Abstract] [Full Text] [Related] [New Search]