These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hepatoprotective role of Nicotiana plumbaginifolia Linn. against carbon tetrachloride-induced injuries.
    Author: Shah AS, Khan RA, Ahmed M, Muhammad N.
    Journal: Toxicol Ind Health; 2016 Feb; 32(2):292-8. PubMed ID: 24097354.
    Abstract:
    Nicotiana plumbignifolia (Linn) is used as folk medicine in the treatment of liver dysfunction in Pakistan. The present study was designed to investigate the hepatoprotective role of N. plumbignifolia methanolice extract (NPME) against carbon tetrachloride (CCl4)-induced oxidative damage in liver of chicks. Methanolic extract of N. plumbignifolia was obtained and was further evaluated as a hepatoprotective agent against CCl4-induced oxidative damage in liver of chicks. For this study, 60-day-old 50 male chicks were divided into five groups. Chicks of group 1 (control) had free access to food and water. Group II received 1 mL/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route thrice a week for 4 weeks. Group III received 100 mg/kg body weight (b.w.) of silymarin via gavage after 48 h of CCl4 treatment, whereas group IV were given 200 mg/kg b.w. NPME after 48 h of CCl4 treatment. Hepatoprotective activity was assessed by measuring the activities of the antioxidant enzymes: catalase, peroxidase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and lipid peroxidation (thiobarbituric acid reactive substances (TBARS)). Serum was analyzed for various biochemical parameters. The results revealed that CCl4 induced oxidative stress as evidenced by the significant decrease in the activity levels of antioxidant enzymes, while an increase in the levels of TBARS in liver samples is compared with the control group. Serum levels lactate dehydrogenase, triglycerides, total cholesterol, and low-density lipoprotein was elevated while reducing high-density lipoprotein compared to controls. Cotreatment of NPME treatment reversed these alterations, which seems likely that NPME can protect the liver tissues against CCl4-mediated oxidative damage.
    [Abstract] [Full Text] [Related] [New Search]