These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluoride-sensitivity of growth and acid production of oral Actinomyces: comparison with oral Streptococcus.
    Author: Kawashima J, Nakajo K, Washio J, Mayanagi G, Shimauchi H, Takahashi N.
    Journal: Microbiol Immunol; 2013 Dec; 57(12):797-804. PubMed ID: 24102761.
    Abstract:
    Actinomyces are predominant oral bacteria; however, their cariogenic potential in terms of acid production and fluoride sensitivity has not been elucidated in detail and compared with that of other caries-associated oral bacteria, such as Streptococcus. Therefore, this study aimed to elucidate and compare the acid production and growth of Actinomyces and Streptococcus in the presence of bicarbonate and fluoride to mimic conditions in the oral cavity. Acid production from glucose was measured by pH-stat at pH 5.5 and 7.0 under anaerobic conditions. Growth rate was assessed by optical density in anaerobic culture. Although Actinomyces produced acid at a lower rate than did Streptococcus, their acid production was more tolerant of fluoride (IDacid production 50 = 110-170 ppm at pH 7.0 and 10-13 ppm at pH 5.5) than that of Streptococcus (IDacid production 50 = 36-53 ppm at pH 7.0 and 6.3-6.5 ppm at pH 5.5). Bicarbonate increased acid production by Actinomyces with prominent succinate production and enhanced their fluoride tolerance (IDacid production 50 = 220-320 ppm at pH 7.0 and 33-52 ppm at pH 5.5). Bicarbonate had no effect on these variables in Streptococcus. In addition, although the growth rate of Actinomyces was lower than that of Streptococcus, Actinomyces growth was more tolerant of fluoride (IDgrowth 50 = 130-160 ppm) than was that of Streptococcus (IDgrowth 50 = 27-36 ppm). These results indicate that oral Actinomyces are more tolerant of fluoride than oral Streptococcus, and bicarbonate enhances the fluoride tolerance of oral Actinomyces. Because of the limited number of species tested here, further study is needed to generalize these findings to the genus level.
    [Abstract] [Full Text] [Related] [New Search]