These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased parasite surface antigen-2 expression in clinical isolates of Leishmania donovani augments antimony resistance. Author: Bhandari V, Kumar D, Verma S, Srividya G, Negi NS, Singh R, Salotra P. Journal: Biochem Biophys Res Commun; 2013 Nov 01; 440(4):646-51. PubMed ID: 24103752. Abstract: Resistance to sodium antimony gluconate (SAG) is a major cause of therapeutic failure in a large proportion of visceral leishmaniasis (VL) cases. Determinants of SAG resistance have been widely studied; however, the mechanism operating in clinical isolates is poorly understood. In the present study, expression of parasite surface antigen-2 (PSA-2) gene was studied in clinical isolates of Leishmania donovani comprising of antimony resistant (n=10) and sensitive (n=4) parasites. The expression of PSA-2 gene was found to be consistently high in SAG resistant clinical isolates (≥1.5-fold) at both transcript and protein level. Further, over-expression of PSA-2 in L. donovani isolates (LdPSA-2(++)) resulted in conversion of SAG sensitive phenotype to resistant. The LdPSA-2(++) parasites showed significantly decreased susceptibility towards SAG (>12-fold), amphotericin B (>4-fold) and miltefosine (>2.5-fold). Marked decrease in antimony accumulation and enhanced tolerance towards complement mediated lysis was evident in LdPSA-2(++) parasites. The study established the role of PSA-2 gene in SAG resistance and its potential as a biomarker to distinguish resistant and sensitive clinical isolates of L. donovani.[Abstract] [Full Text] [Related] [New Search]