These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Human factor VIII procoagulant protein. Monoclonal antibodies define precursor-product relationships and functional epitopes.
    Author: Fulcher CA, Roberts JR, Holland LZ, Zimmerman TS.
    Journal: J Clin Invest; 1985 Jul; 76(1):117-24. PubMed ID: 2410456.
    Abstract:
    The human Factor VIII procoagulant protein (VIII:C) purified from commercial Factor VIII concentrate consisted of a polypeptide doublet of 80,000 mol wt, a 92,000-mol wt polypeptide, and additional polypeptides of up to 188,000 mol wt. Thrombin digests contained a doublet of 72,000 mol wt, as well as 54,000- and 44,000-mol wt fragments. Proteolysis studies of purified VIII:C using thrombin and activated protein C have suggested that the 92,000- and 80,000 (or 72,000)-mol wt polypeptides comprise activated VIII:C. We have now used seven monoclonal antibodies raised against purified VIII:C to construct a preliminary epitope map of these VIII:C polypeptides. The specific VIII:C polypeptides with which the monoclonal antibodies reacted were determined by immunoblotting of VIII:C onto nitrocellulose sheets after reduced NaDodSO4-polyacrylamide gel electrophoresis. A minimum of five distinct epitopes were defined by these monoclonal anti-VIII:C antibodies. Identification of polypeptides bearing these epitopes allowed localization of distinct thrombin cleavage sites to the 92,000- and 80,000-mol wt chains, helped define polypeptide chain precursor-product relationships, and suggested that both the 92,000- and 80,000-mol wt polypeptides are necessary for VIII:C function. These data and their interpretation are consistent with the published description of the complete primary structure of VIII:C and its thrombin cleavage products. The 92,000- and 80,000-mol wt chains have been located at the amino- and carboxy-terminal ends of the molecule, respectively.
    [Abstract] [Full Text] [Related] [New Search]