These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of alpha 1 with alpha 2 region in class I MHC proteins contributes determinants recognized by antibodies and cytotoxic T cells.
    Author: Stroynowski I, Clark S, Henderson LA, Hood L, McMillan M, Forman J.
    Journal: J Immunol; 1985 Sep; 135(3):2160-6. PubMed ID: 2410513.
    Abstract:
    The structure-function relationship of individual coding regions of class I mouse major histocompatibility complex proteins was studied by a combination of recombinant DNA, gene transfer techniques, and serologic and functional characterization. To examine the role of alpha 1 and alpha 2 regions in antibody and CTL recognition, the third exon of H-2Dd, Kd, and Ld transplantation antigen genes was replaced by the homologous coding region of the Qa-2-coded class I gene, Q6. We have chosen to carry out the exon shuffling experiments between these two different types of class I genes, because they are structurally similar and did not evolve to carry out identical functions. Therefore, it is less likely that the hybrid proteins will fortuitously recreate alpha 1-alpha 2 controlled functionally important determinants. The replacement of H-2 alpha 2 coding region with its Q6 counterpart had different effects on the expression of the three genes. The mutant H-2Dd gene transfected into L cells was expressed at high levels and retained several of the serologic determinants found on parental H-2Dd and Q6 domains. The serologic epitopes on the mutant H-2Kd-transfected cells were detectable at very low levels, whereas the product of the mutant H-2Ld gene could not be identified at all. Analysis of cells transfected with mutant H-2Dd gene with alloreactive and minor antigen(s)-restricted cytotoxic T cells indicated that the hybrid proteins lost the ability to be recognized by T cells. Our data suggest that cytotoxic T cells recognize conformational determinants composed of amino acids from alpha 1 and alpha 2 regions. Alternatively, it could be proposed that T cell recognition sites located in a single alpha 1 or alpha 2 protein region are susceptible to distortion upon alpha 1-alpha 2 interactions. Such susceptibility to conformational changes of the amino-terminal domain of transplantation antigens could be of functional importance for H-2-restricted antigen presentation.
    [Abstract] [Full Text] [Related] [New Search]