These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein kinase C delta mediated cytotoxicity of 6-Hydroxydopamine via sustained extracellular signal-regulated kinase 1/2 activation in PC12 cells.
    Author: Fan Y, Li J, Zhang YQ, Jiang LH, Zhang YN, Yan CQ.
    Journal: Neurol Res; 2014 Jan; 36(1):53-64. PubMed ID: 24107416.
    Abstract:
    OBJECTIVES: The incidence of Parkinson's disease (PD) is increasing as the global population ages. 6-hydroxydopamine (6-OHDA) can induce PD-like neuropathology and biochemical changes in both in vitro and in vivo models. Therefore, clarification of the molecular mechanism of 6-OHDA-induced cell death might contribute to the understanding of the pathogenesis of PD. METHODS: With this goal in mind, we investigated the role of protein kinase C delta (PKC delta) in 6-OHDA-dependent death using the pheochromocytoma cell line, PC12. Cells were treated with 6-OHDA to induce toxicity with or without pretreatment using rottlerin (a PKC delta inhibitor), bisindolylmaleimide I (a general PKC inhibitor), Gö6976 (a PKC inhibitor selective for calcium-dependent PKC isoforms), or phorbol-12-myristate-13-acetate (PMA, a PKC activator). RESULTS: Phorbol-12-myristate-13-acetate decreased cell survival and increased the rate of apoptosis while rottlerin increased cell survival and decreased the rate of apoptosis. In contrast, neither bisindolylmaleimide I nor Gö6976 affected 6-OHDA-induced cell death. Western analysis demonstrated that phosphorylation of PKC delta on Thr 505 as well as extracellular signal-regulated kinase (ERK) phosphorylation increased after exposure to 6-OHDA. This increase in PKC delta phosphorylation was potentiated by PMA. However, rottlerin attenuated the 6-OHDA-stimulated increase in PKC delta and ERK phosphorylation. CONCLUSION: These data suggest that PKC delta, rather than classic-type PKC (alpha, beta1, beta2, gamma), participates in 6-OHDA-induced neurotoxicity in PC12 cells, and PKC delta activity is required for subsequent ERK activation during cell death.
    [Abstract] [Full Text] [Related] [New Search]