These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase.
    Author: Powers SG, Riordan JF.
    Journal: Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2616-20. PubMed ID: 241076.
    Abstract:
    The reaction of phenylglyoxal with two enzymes in which ATP plays a complex role has been studied. Both ovine brain glutamine synthetase and Escherichia coli carbamyl phosphate synthetase [carbamoyl-phosphate synthase (glutamine); ATP:carbamate phosphotransferase (dephosphorylating, amido-transferring); EC 2.7.2.9]were inactivated by phenylglyoxal. The specificity of this reagent for arginyl residues of the two proteins was confirmed by amino acid analysis. ATP, but not the other substrates, protected these enzymes against inactivation by phenylglyoxal. Carbamyl phosphate synthetase was also protected by IMP and ornithine, positive allosteric effectors that alter the enzymatic activity be increasing the affinity for ATP. UMP, a negative allosteric effector that decreases the affinity for ATP, did not protect against inactivation. Differential labeling experiments with [14C]phenylglyoxal showed that the number of arginyl residues protected by ATP corresponded quite well to the known number of ATP catalytic sites for each protein. These data indicate that arginyl residues at the active sites of glutamine synthetase and carbamyl phosphate synthetase are involved in the binding of ATP. This phenylglyoxal inactivation study also provided information about the mechanistic role of ATP in the two synthetases. The data obtained on glutamine synthetase support the theory that ATP is attached to the enzyme as a portion of the catalytic site, and that its presence is essential for the binding of glutamate and glutamine. The data obtained on carbamyl phosphate synthetase are consistent with the previous proposal that carbonyl phosphate is an intermediate in the ATP-dependent activation of bicarbonate by this enzyme. It is also of interest that, with both glutamine synthetase and carbamyl phosphate synthetase, only a small portion of the total arginyl population of these enzymes reacted with phenylglyoxal. A summary of previous studies on the modification of enzyme arginyl residues is presented.
    [Abstract] [Full Text] [Related] [New Search]